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Abstract. High dimensional, sparsely populated data spaces have been characterized in terms of ultrametric
topology. There are natural, not necessarily unique, tree or hierarchy structures defined by the ultrametric
topology. Once such a structure is known, and can be defined, there are various implications including
the feasibility of improved computational complexity for operations such as nearest neighbor searching.
In this work, we consider the case where the data under investigation is temporal data, in the form of a
time series. We develop an approach to characterizing how well time series data can be embedded in an
ultrametric topology. Possible applications of this work include: (i) unique fingerprinting of a time series;
(ii) discriminating between time series from various domains; and (iii) if data are inherently hierarchical,
then using such hierarchies to model and predict.

PACS. 05.45.Tp Time series analysis – 05.45.-a Nonlinear dynamics and nonlinear dynamical systems –
02.50.Sk Multivariate analysis

1 Introduction

1.1 Relationship of ultrametricity with sparseness
and dimensionality

The question has been raised [1,2] as to how ultrametric
financial stocks are. However this analysis was through
definition of a metric on a set of time series, followed by
construction of a hierarchical clustering, which therefore
yielded ultrametric properties by construction. We are in-
stead interested in the inherent ultrametric properties of
an individual time series.

To address this, firstly we embed the time series in
a space of specified dimensionality, which we can endow
with a metric, typically the Euclidean metric. This is a
very traditional procedure. Secondly, inspired by the re-
sults of [3–5] we investigate data coding. We find that
extent of ultrametricity is crucially dependent on coding
of the data values in a given time series. In this article
we are concerned with univariate time series, to simplify
the description, and also to focus the experimental eval-
uations. Generalization to the case of multivariate time
series is straightforward.

We use a “very coarse-grained description” of values
in a time-varying signal, leading to a “symbolic analy-
sis” [6,7]. Unlike work such as [6,7] which is based on
ordinal properties of the data values, we are seeking per-
sistent local hierarchical patterns that can be taken as
defining a local ultrametric topology.
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1.2 Ultrametricity

The triangular inequality holds for a metric space:
d(x, z) ≤ d(x, y)+d(y, z) for any triplet of points x, y, z. In
addition the properties of symmetry and positive definite-
ness are respected. The “strong triangular inequality” or
ultrametric inequality is: d(x, z) ≤ max {d(x, y), d(y, z)}
for any triplet x, y, z. An ultrametric space implies respect
for a range of stringent properties. For example, the tri-
angle formed by any triplet is necessarily isosceles, with
the two large sides equal; or is equilateral.

Ultrametricity has been shown to be a natural prop-
erty of high-dimensional spaces [3,4]; and ultrametricity
emerges as a consequence of randomness and of the law
of large numbers. In previous work [5] we obtained fur-
ther experimental results using Lerman’s [8] approach to
quantifying ultrametricity, and the new coefficient of ul-
trametricity described below, which supported the find-
ing that high-dimensional sparse spaces are naturally
ultrametric.

An ultrametric topology is associated with the p-adic
numbers, and in clustering a bijection is defined between a
rooted, binary, ranked, indexed tree, called a dendrogram,
and a set of ultrametric distances. Using an agglomerative
clustering algorithm, we can induce an ultrametric (i.e.
respect for the ultrametric inequality, given any triplet
of points) on any set of points endowed with a pairwise
dissimilarity function. When a collection of points, in a
space of any given dimensionality, is such that all triplets
of points already satisfy the ultrametric inequality, then
this collection of points has a natural hierarchical struc-
ture. It is not guaranteed that this hierarchy is unique.
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1.3 Data coding

A time series can be easily embedded in a space of dimen-
sionality m, by taking successive intervals of length m, or
a delay embedding of order m. Thus we define points

xr = (xr−m+1, xr−m+2, . . . , xr−1, xr)t ∈ R
m

where t denotes vector transpose. Based on previous re-
sults we expect that as the dimension m grows, then the
point set in R

m becomes more ultrametric. This finding is
borne out below.

Given any xr = (xr−m+1, xr−m+2, . . . , xr−1, xr)t ∈
R

m, let us consider the set of s such contiguous inter-
vals determined from the time series of overall size n. For
convenience we will take s = �n/m� where �.� is integer
truncation. The contiguous intervals could be overlapping
but for exhaustive or near-exhaustive coverage it is accept-
able that they be non-overlapping. In the experiments be-
low, the intervals were non-overlapping. We will study how
ultrametric the point xr is, through simply investigating
the m points, xr−m+1, xr−m+2, . . . , xr−1, xr on which we
will define a signal ultrametricity index value. The quan-
tification of the ultrametricity of the overall time series
is provided by the aggregate over s time intervals of the
ultrametricity of each xr, 1 ≤ r ≤ s. We will simplify
notation by defining the values in any given “window” or
data interval, xr, as xr = {xrj|1 ≤ j ≤ m}.

In this article we want to directly quantify the ex-
tent of ultrametricity in time series data. In [4,5] it was
shown how increase in ambient spatial dimensionality
leads to greater ultrametricity. However it is not satis-
factory from a practical point of view to simply increase
the embedding dimensionality m insofar as short mem-
ory relationships are of greater practical relevance (espe-
cially for prediction). The greatest possible value of m > 1
is the total length of the time series, n. Instead we will
look for an ultrametricity measurement approach for given
and limited sized dimensionalities m. Our experimental
results below for real and for random data sets are for
m = 5, 10, . . . , 105, 110.

We will seek local ultrametricity, i.e. hierarchical
structure, by studying the following: Euclidean distance
squared, djj′ = (xrj − xrj′ )2 for all 1 ≤ j, j′ ≤ m in each
time window, xr.

Analyzing the local structure of the time series in this
way is not remarkable. There is a long tradition of car-
rying out local principal components analysis or local re-
gression [9,10]. Insofar as we are using a simple mapping
of pairwise distances, our approach can be seen as defin-
ing a texture measure related to the widely-used Haralick
co-occurrence matrix [11]. Hence our measure is a simple
texture measure for one-dimensional signals, and more ad-
vanced measures can be easily envisaged (entropy-based,
etc.).

Using distance allows for immediate generalization to
multivariate time series. Distance also detrends the sig-
nal. The distance squared can be considered as an energy
measure (as is usual in signal processing). We investigated
the distance (not squared) and found that it provides an
equally feasible alternative.

We will enforce sparseness [3–5] on our given distance
values, {djj′}. We do this by linearly approximating each
value djj′ , in the range maxjj′djj′ − minjj′djj′ , by an
integer in 1, 2, . . . p. Note that the range is chosen with
reference to the currently considered time series window,
1 ≤ j, j′ ≤ m. Note too that the value of p must be spec-
ified. Thus far, the recoded value, d′jj′ is not necessarily
a distance. With the extra requirement that d′jj′ −→ 0
whenever j = j′ we will show below that d′jj′ is a metric.

This coding of distances is similar to the ordinal cod-
ing used in [6,7,12]. In this work we study the case of
p = 2. We investigated exactly the same index of ultra-
metricity for increasing values of p. We found decrease of
ultrametricity index value for increasing p. We will not
report further on this line of investigation here.

To summarize, in our coding, a small pairwise tran-
sition is mapped onto a value of 1; and an exceptionally
large pairwise transition is mapped onto a value of 2. A
pairwise transition is defined not just for data values that
are successive in time but for any pair of data values in
the window considered.

1.4 Recoding: Properties

Consider the case of p = 2. Given any two values in
the window, we code 1 if there is no change or small
change; and 2 if the change is large. The threshold be-
tween large versus small is defined as maxjj′djj′/2 where
values indexed by j, j′ are in the window. The ultrametric
inequality for such dissimilarities typifies an energy land-
scape [3,4] in that change in value between any j and j′′
is given by the maximum of change between values in-
dexed by j, j′, and values indexed by j′, j′′. We are simply
considering the appropriately discretized one-dimensional
signal within the m-length window in terms of an “energy
landscape”. In our assessment of ultrametricity, we will
see how ultrametric these pairwise recoded distances are.

Consider the case of the following mapping: djj′ −→ 0
if djj′ ≤ maxjj′djj′/2; and djj′ −→ 1 if djj′ >
maxjj′djj′/2. It is easily verified that d is a metric and
furthermore an ultrametric.

Our ordinal coding requires: djj′ −→ 1 if djj′ ≤
maxjj′djj′/2; djj′ −→ 2 if djj′ > maxjj′djj′/2; and
djj′ −→ 0 if j = j′. We have that djj′ = dj′j ≥ 0, and
djj′ = 0 ⇐⇒ j = j′. For the triangular inequality, con-
sider distinct j, j′, j′′. Given djj′′ ≤ djj′+dj′j′′ , if djj′′ = 2,
then this inequality always holds, potentially as an equal-
ity. If djj′′ = 1 then also this inequality must hold, as a
strict inequality. If now we consider non-distinct j, j′, j′′,
the triangular inequality is still found to hold. We have
therefore proved that our ordinal coding results in a met-
ric. There is not a guarantee however that our ordinal
coding is an ultrametric since we cannot guarantee that
djj′′ ≤ max {djj′ , dj′j′′}. Consider e.g. djj′′ = 2, and
djj′ , dj′j′′ = 1.
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2 Approaches to quantifying ultrametricity

2.1 Past approaches

The Rammal ultrametricity index [3,4] is given by∑
x,y(d(x, y) − dc(x, y))/

∑
x,y d(x, y) where d is the met-

ric distance being assessed, and dc is the subdominant
ultrametric. The Rammal index is bounded by 0 (= ul-
trametric) and 1. This index suffers from “the chaining
effect and from sensitivity to fluctuations” [3,4]. The sin-
gle link hierarchical clustering method, yielding the sub-
dominant ultrametric, is, as is well known, subject to such
difficulties.

Lerman’s H-classifiability measure [8] considers all pos-
sible triplets of points, and then considers how isosceles
the associated triangles are. So as to avoid influence of
distribution of the distance values, Lerman’s measure is
based on ranks (of these distances) only. We investigated
Lerman’s measure extensively in [5], and found that the
ordinal approach unduly downgrades the importance of
the equilateral triangle case, which is important for us.
With Lerman’s index, ultrametricity is associated with
H = 0 but ultrametricity is not bounded.

Treves [13] considers triplets of points giving rise to
minimal, median and maximal distances. In the plot of
dmin/dmax against dmed/dmax, the triangular inequality,
the ultrametric inequality, and the “trivial limit” of equi-
lateral triangles, occupy definable regions.

Hartmann [14] considers dmax − dmed. To give (trans-
lation, scale, etc.) invariance to the sensitivity (i.e., insta-
bility, lack of robustness) of distances, Hartmann fixes the
remaining distance dmin.

2.2 A new measure of ultrametricity based on angles

We seek to avoid, as far as possible, lack of invariance
due to use of distances. We seek to quantify both isosceles
with small base configurations, as well as equilateral con-
figurations. Finally, we seek a measure of ultrametricity
bounded by 0 and 1. We will therefore use a coefficient
of ultrametricity – we will term it γ – which is specified
algorithmically as follows.

1. All triplets of points are considered, with a distance
(by default, Euclidean) defined on these points. For
n points (data values, vector or scalar: in this paper
we deal with scalar values) the number of triplets is
n(n − 1)(n − 2)/6.

2. We check for possible alignments (implying degenerate
triangles) and exclude such cases.

3. Next we select the smallest angle as less than or
equal to 60◦. (We use the well-known definition of
the cosine of the angle facing side of length x as:
(y2 + z2 − xy)/2yz.) This is our first necessary prop-
erty for being a strictly isosceles (<60◦) or equilateral
(=60◦) ultrametric triangle.

4. For the two other angles subtended at the triangle
base, we seek an angular difference of strictly less
than 2◦ (0.03490656 radians). This condition is an

approximation to the ultrametric configuration. This
condition is targeting a configuration that may not
be exactly ultrametric but nonetheless is very close
to ultrametric.

5. Among all triplets (1) satisfying our exact proper-
ties (2, 3) and close approximation property (4), we
define our ultrametricity coefficient as the relative pro-
portion of these triplets. Approximately ultrametric
data will yield a value of 1. On the other hand, data
that is non-ultrametric in the sense of not respecting
conditions 3 and 4 will yield a low value, potentially
reaching 0.

3 Quantitative assessments

Table 1 lists 31 real data sets used. In Table 1
we looked at subsets of the financial futures and
Mississippi data in order to assess how process-
ing part of the data differed from processing all.
The EEG channel data (two channels used) is
from http://www.cs.colostate.edu/eeg/index.html.
Other EEG data is from ftp://sigftp.cs.tut.fi/
pub/eeg-data. In the present work we treated each chan-
nel as an individual signal. The irregular epilepsy is de-
scribed as between petit mal epilepsy and a tic symptom.
The quadratic map is chaotic for nearly all x0 ∈ [0, 1].

Time series used in this work which are not other-
wise easily available are at the following address, as is
also the program used (written in C) for most of the
experimental appraisal: http://astro.u-strasbg.fr/
∼fmurtagh/time-series. (Figures in this paper were
produced with R and/or S-Plus. The program for princi-
pal components analysis, used for summarizing the results,
is available on our site at: http://astro.u-strasbg.fr/
∼fmurtagh/mda-sw).

Then in addition to the 31 time series from Table 1,
in order to baseline the results, we also used uniformly
random data with the same numbers of data values: 1326,
1169, 2739, 1374, 3080, 6160, 1471, 20000, 43829, 34726,
2500, 999, 1999. We investigated differing initializations
for the random number generation: this had little effect
and we do not report on these results here. In all therefore
44 time series were analyzed.

Summarizing the methodology, we begin by consid-
ering pairwise squared Euclidean signal distance in each
time window: (xrj − xrj′)2 for all 1 ≤ j, j′ ≤ m for each
time window, xr. We map each value of squared distance
between distinct time series data values into an integer,
1, 2, depending on the threshold given by the average
squared distance. We determine the ultrametricity mea-
sure, γ, for varying m (m = 5, 10, . . . , 105, 110).

Typical results are presented in Table 2. The baseline
random results do not differ much for varying n (number
of data values in the time series). In all cases, there is
generally an increase in γ for increasing window size m,
which equates to increasing embedding dimensionality. To
see this, consider the fact that we are defining pairwise
distances between all data values in the window. Then
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Table 1. Real data sets used in computational assessments.
Simulated data sets (see text for details) had sequence num-
bers 32 through 44.

Seq. No. Abbreviated Name No. Values and Description

1 FTSE 1326

FTSE – Financial Tmes Stock Exchange index

2 USD/EUR 1169

USD/EUR daily foreign exchange rates

3 Sunspot 2739

Monthly index values of sunspot solar physics activity

4 Stock 1374

Stock price, unknown origin

5 Futures-3080 3080

First 3080 values of futures

6 Futures 6160

Futures, daily highs

7 Eyegaze 1471

One coordinate of eyegaze position from eye tracker

8 Mississippi-20000 20,000

First 20,000 values of Mississippi data

9 Mississippi 43,829

Mississippi River daily water levels

10 WWW traffic 34,726

Bytes transferred per hour by a web server

11 EEG-chan4 2500

EEG channel p4, sampled at 250 Hz for 10 seconds

12 EEG-chan5 2500

EEG channel o1, sampled at 250 Hz for 10 seconds

13 Quadratic map 1 2500

xt+1 = 4xt(1 − xt), x0 = 0.2

14 Quadratic map 2 2500

xt+1 = 4xt(1 − xt), x0 = 0.37777

15 Quadratic map 3 2500

xt+1 = 4xt(1 − xt), x0 = 0.451

16 Sleep EEG chan. 1 999

EEG, sleep recording, normal, male, 28 years

17 Sleep EEG chan. 2 999

EEG, sleep recording, normal, male, 28 years

18 Sleep EEG chan. 3 999

EEG, sleep recording, normal, male, 28 years

19 Sleep EEG chan. 4 999

EEG, sleep recording, normal, male, 28 years

20 Sleep EEG chan. 5 999

EEG, sleep recording, normal, male, 28 years

21 Sleep EEG chan. 6 999

EEG, sleep recording, normal, male, 28 years

22 Sleep EEG chan. 7 999

EEG, sleep recording, normal, male, 28 years

23 Sleep EEG chan. 8 999

EEG, sleep recording, normal, male, 28 years

24 Petit mal EEG chan. 1 1999

EEG, petit mal epilepsy, male, 13 years

25 Petit mal EEG chan. 2 1999

EEG, petit mal epilepsy, male, 13 years

26 Petit mal EEG chan. 3 1999

EEG, petit mal epilepsy, male, 13 years

27 Petit mal EEG chan. 4 1999

EEG, petit mal epilepsy, male, 13 years

28 Irreg. epil. EEG chan. 1 1999

EEG, irregular type epilepsy, female, 10 years

29 Irreg. epil. EEG chan. 2 1999

EEG, irregular type epilepsy, female, 10 years

30 Irreg. epil. EEG chan. 3 1999

EEG, irregular type epilepsy, female, 10 years

31 Irreg. epil. EEG chan. 4 1999

EEG, irregular type epilepsy, female, 10 years

Table 2. A sample of results: values in the table are the γ ul-
trametricity index for different data sets and for varying m.
FTSE financial index, and EEG channel 1 data with petit mal
epilepsy discharges, were used. Random data sets were used
in both cases to provide a baseline for these results. Sliding
window size (embedding dimensionality) m.

m FTSE Random Petit mal 1 Random
(n = 1326) (n = 1326) (n = 1999) (n = 1999)

5 0.666792 0.668679 0.652130 0.670927
10 0.797854 0.745581 0.768844 0.747822
15 0.857168 0.778197 0.810113 0.774981
20 0.889421 0.787267 0.834574 0.787684
25 0.911665 0.798138 0.847419 0.796769
30 0.929086 0.807412 0.869242 0.805583
35 0.932682 0.811166 0.884085 0.811213
40 0.939093 0.818525 0.892667 0.817591
45 0.946903 0.819083 0.907404 0.818962
50 0.957005 0.819533 0.907352 0.820175
55 0.957574 0.821033 0.915256 0.821706
60 0.966657 0.825426 0.915082 0.824871
65 0.962117 0.824178 0.929823 0.825450
70 0.968155 0.826235 0.927563 0.826589
75 0.972261 0.824427 0.934610 0.827345
80 0.971924 0.827670 0.936480 0.828694
85 0.974162 0.829166 0.941335 0.830901
90 0.977248 0.832391 0.944002 0.833421
95 0.979769 0.831003 0.944998 0.832070

100 0.981258 0.832870 0.951889 0.834850
105 0.981922 0.831642 0.950013 0.831216
110 0.984535 0.830991 0.952017 0.833330

m points can be embedded in a metric space of dimen-
sionality at most m − 1.

Figures 1, 2, and 3 give an overall view of the γ ultra-
metricity index. We used principal components analysis
based on variances and covariances, i.e. based on center-
ing to zero mean in attribute space. Our attributes were
the 22 window sizes (m = 5, 10, . . . , 105, 110), and our ob-
servations were the 44 time series.

Figure 1 shows the near-linear ordering (on the curve)
of the window sizes, m. Figure 2 shows a wide range of
findings: the random data sets (numbered 32 to 44) are
all highly clustered; the chaotic data sets (numbered 13,
14, 15) are well-separated; the partial and complete data
sets are close, viz. futures numbered 5 and 6, and Mis-
sissippi water levels numbered 8 and 9; the eyegaze trace
data, numbered 7, is remarkably high in ultrametricity
γ index value, which may be due to extreme values that
were not subject to preprocessing; all EEG data sets
are close together, viz. numbers 11 and 12; numbers 16
through 23 for the normal sleep subject, and numbers 24
through 27, and 28 through 31, for the epilepsy cases.

The principal components analysis presents an over-
all view of the relationships between time series. Fig-
ure 3 takes (arbitrarily but indicatively) two of the time
windows, m = 10 and m = 110, and plots values for
the 44 time series. We see immediately that greater em-
bedding dimensionality, which corresponds (not neces-
sarily monotonically) to greater m, results in higher γ
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ultrametricity index value (upper curve of values, com-
pared to lower curve). Secondly we see that the great-
est departure from ultrametricity is to be found for time
series 13, 14, and 15, i.e. the quadratic map chaotic se-
ries. On the other hand, the random data valued time
series numbered 32 and greater are remarkably similar in
γ value. The eyegaze trace here (time series 7) is not un-
duly different from other time series. The relatively short
EEG time series raise some interesting issues (e.g., dif-
ferences between waking, sleeping, or epileptic behaviors)
which we will not pursue further here.

Again we find the futures (initial half of the time series
and the full time series used, numbered 5 and 6) to be very

similar. The Mississippi water level (initial half, and full,
time series, numbered 8 and 9) are also very similar. This
shows how γ is not influenced by the length of the time
series data.

4 Discussion

4.1 Data embedding

Consider the case of each data value in our given time
series as being associated with the node of a binary tree.
For the present, it is not important how this binary tree is
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determined. We may also start with the time series data
values being the terminal nodes of a binary tree, and then
convert this into a tree defined by an in-order tree traversal
(see [15]). With any such binary tree there is a bijection
with an indexed binary tree, and in turn a bijection with
a set of pairwise ultrametric distances [16].

A succession of m values in a time series will be con-
sidered as a set of randomly sampled (arbitrary distribu-
tion) nodes from a binary tree. Between any triplet of data
values, an ultrametric relationship implies that the asso-
ciated triangle is either equilateral or isosceles with small
base. In our assessment of ultrametricity, we examine all
possible triangles for these properties.

Choosing a fixed value of m has an evident computa-
tional advantage, and additionally, from the point of view
of practical implications for modeling and prediction (for
example), local (small m) ultrametricity is better than
very large m.

As already noted [3–5] we must seek ultrametricity in
a sparse and hence relatively high dimensional space. In
our approach, we therefore map our given time series data
into a sparse space by data coding.

4.2 Inferring hierarchies

We recall that our coding maps distances between data
values into 1 or 2 (with strictly > 0 distance assumed
for distinct data values). If the time series, thus coded, is
found to be ultrametric (with a value of our ultrametric-
ity index γ = 1), then the ultrametric inequality can be
invoked to show that any triplet of distances has one of
the following set of codes: 1, 1, 1; 1, 2, 2; 2, 2, 1; 2, 1, 2;

and 2, 2, 2. The following set of codes is excluded: 1, 1, 2;
1, 2, 1; and 2, 1, 1.

Consider a window length of m = 5, with data val-
ues given by (xr−4, xr−3, xr−2, xr−1, xr)t. Following our
data coding, let us asssume that values xr−4, xr−3, xr

are all mutually 1 apart; and that values xr−2, rr−1 are
2 apart, and all of the latter are 2 apart from the for-
mer. This is a legitimate albeit contrived situation. We
use it simply to have the following two-level hierarchy:
((xr−4, xr−3, xr), xr−2, rr−1).

Such a pattern results from the ultrametric inequality.
The question as to whether the same pattern repeats in
all m−length windows remains an open one.

4.3 Relationship with self-similarity

Self-similarity (for various works, including use for signal
modeling and prediction, see [17–19]) points to the need
to take long memories into account in modeling. From the
literature on web traffic flows, EEG signals, eyegaze trace
signals, etc., it is very likely that data sets used by us
have self-similarity properties. However our methodology
here is not directly related to self-similarity. Instead we
are looking for strong hierarchical relationships that are
consistently (and persistently over time) present in the
m-length sliding windows.

4.4 Relationship with ordinal coding

In [6,7,12], ordinal and hence permutation coding of the
data is used. There is a clear relationship between a per-
mutation and a hierarchical or tree structuring of a set of
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data values (again we note, in this article univariate, but
with trivial extension to the multivariate case). There is
an isomorphism between a class of hierarchic structures,
termed unlabeled, ranked, binary, rooted trees, and a class
of permutations. The latter are the alternating permuta-
tions where p(i) < p(i + 1) > p(i + 2) for 1 ≤ i ≤ n − 2,
which is an up-down or down-up permutation depending
on the state of i = 1. Such a permutation can be read off
the unlabeled, ranked, binary, rooted tree (or dendrogram)
through in-order tree traversal. The number of comple-
mentary up-down or down-up permutations are counted
by the André numbers (for n = 4, 5, 6, 7, 8, respectively 2,
5, 16, 61, 272). See [15,20,21]. We can conclude that our
work differs from [6,7,12] in that while both are in terms
of permutation- or ordinal-based coarse-grained symbolic
description, our work uses a more restrictive coding.

4.5 Relationship with hierarchies in graphs

As opposed to our approach where the embedding used
is fixed (window of length m), in considering the de-
gree of hierarchical structure in a graph or network,
Trusina et al. [22] use interconnecting paths, and therefore
variable-sized or adaptive embeddings. Based on graph
vertex weights, vertex interconnection paths are charac-
terized in terms of up and down. There are intriguingly
close links between this work and ours, for the discovery
of hierarchical patterns in, respectively, graphs and time
series, which we will return to in future work.
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